If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.5x^2+5x-20=0
a = 2.5; b = 5; c = -20;
Δ = b2-4ac
Δ = 52-4·2.5·(-20)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-15}{2*2.5}=\frac{-20}{5} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+15}{2*2.5}=\frac{10}{5} =2 $
| |2-7x|=58 | | -5.7-5x=12.3 | | y+6=2y-16 | | 3(w+2)-6w=18 | | 2x-6+4=6x-4 | | 12((x+1)/3)-(x/4)=(1/2)12 | | 18x-6=2x-4 | | 6(×-9)=4x-5 | | 12(((x+1)/3)-(x/4))=(1/2)12 | | 36x-36=6x-24 | | 45x-45=5x-15 | | 15+2x=-15x | | 24x-12=4x-8 | | 6z=4=z-11 | | 15y+3=28 | | y+3y=90 | | x^2+32x+255=0 | | 8y+6=9y+3 | | 7r+10=17 | | 140=14x | | d/9-(-84)=90 | | -5/7x-1=3 | | 8x+16=7x+21 | | X=2x+150 | | w/3-3=5 | | 6x+30=-4x | | (6t+12)=28 | | j/9+93=88 | | 18s+18=18 | | X+4x+90+20=180 | | -12g-2g=-14 | | 6p+2=30 |